Nanoscale materials for high-energy density lithium-ion batteries

NanoEngineers at the University of California, San Diego are designing new types of lithium-ion (Li-ion) batteries that could be used in a variety of NASA space exploration projects – and in a wide range of transportation and consumer applications. NEI Corporation and UC San Diego recently won a Phase II Small Business Technology Transfer contract from NASA to develop and implement high energy density cathode materials for lithium batteries. dell Inspiron E1505 battery

NEI is the prime contractor on the NASA contract and Shirley Meng, a professor in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering, is a subcontractor. The nearly $600,000 program builds upon expertise in the UC San Diego Department of NanoEngineering in modeling new nanocomposite structures for next generation electrode materials, and NEI’s capability to reproducibly synthesize electrode materials at the nanoscale. dell Latitude D510 battery

Battery Applications

Advanced Li-ion battery systems with high energy and power densities – and the ability to operate at low temperatures – are required for NASA’s exploration missions. The James Webb Space Telescope (JWST), Mars Atmospheric and Volatile Evolution (MAVEN), deep drilling equipment and Astrobiology Field Laboratory on Mars, International X-ray Observatory (IXO), and extravehicular activities are potential space applications. Advanced lithium-ion battery packs could also be used in hybrid electric vehicles, consumer electronics, medical devices, electric scooters, and a variety of military applications.

Designing Batteries from the Atom Up

The UC San Diego NanoEngineers will help guide development of the new batteries using advanced modeling techniques. “We will give NEI candidate materials that we think will have optimal battery properties, and they will make the materials using their proprietary technology,” said professor Shirley Meng, who leads the Laboratory for Energy Storage and Conversion in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. dell Inspiron 1720 battery

The outcome of the program will be a commercially useable cathode material with exceptionally high capacity – more than 250 milliAmp-Hours per gram (250 mAh/g) at about 4V, which translates to an energy density of more than 1000 Watt-hours per kilogram (Wh/kg). This represents a factor of two enhancement in energy density over lithium cobalt oxide, which is the most commonly used cathode material at the present time. NEI expects to have sample cathode materials for testing by interested end-users by the middle of 2011.


~ by vascoteixeira on December 9, 2010.

%d bloggers like this: